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ABSTRACT

<,/ The main result of this paper is summarized in Theorem 1, which states
that when certain conditions of a general nature are satisfied, the data-
based histogram density estimator is strongly consistent in the sense that
the mean absolute deviation of the estimator and the density function con-
verges to zero almost surely for any density function, as the sample size

increases to infinity.
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1. INTRODUCTION AND MAIN RESULTS

Suppose that X is a one-dimensional random variables with distribution

F and density f. Let X]""’Xn be i.i.d. observations of X. It is desired

to estimate f(x) by these samples. For this purpose we introduce a parti-

tion of R = (coym):

R‘l =LJQ I(_i;x],ooogx

i=1

)s (M

n

where I(i;X],...,Xn). i=1,2,... are intervals with lengths greater than

zero, and I(i;X1,...,Xn) N I(j;X],...,Xn) =g for i # j. Write

Ky = Kn(x1....,xn) = {I(i;X],...,Xn): i=1,2,...1,

In(x) The interval I(i;X1....,Xn) containing x,

n

P (x) = #{{i:1<i<n, X, € I (x)}), where #(A) denotes the number
of elements belonging to A,

and define an estimate of f(x) as follows:

f(x) = f (xXa.00X ) = p (x)/(n]1 (x)]). (2)

n

Here and in the following we write |A| for the Lebesgue measure of the set
A c:R]. fn(x) is the so-called data-based histogram estimate based on the
partition Kn‘ "Data~based" means that Kn depends on the sample X],...,Xn.
while in the ordinary histogram estimate, the partition is predetermined
before the samples were drawn.

Write 8 = An(X],...,Xn) for the Li-norm of f e

AL = Iw [fn(x) - f(x)|dx = Jlfn - f|dx. (3)

A number of papers appeared dealing with the weak (i.e. in probability)

convergence of L to zero. Among these we mention the recent paper [2] by

J. Chen and H. Rubin, in which they prove that An —£+ 0 under quite general

e .
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conditions imposed on Kn' In the present article we deal with the problem

of a.s. convergence. Specifically speaking, we prove the following theorem.

Theorem 1. Suppose that Kn satisfies the following two conditions:

1. 1im|In(x)| =0, a.s. for x € R], a.e.l. (4)

n-ro
2. Denote by Cnt the number of intervals in Kn having at least one

common point with [-t,t], we have for any fixed t > 0,
Coy = o(n/log n), a.s. (5)
Then, for the estimator f defined by (2) it is true that

lima_ =0, a.s. (6)
[ and n

where 4 is the Ly-norm of f_ defined by (3).

Essentially speaking, Chen and Rubin proved that Aﬁ——z+ 0 under our
condition 1 and Cnt = op(n), and another condition with a more complicated
nature. In order to prove (6) we pay a price that the condition Cnt = op(n)
is strengthend to (5). It is easy to show by an example that (5) cannot be
replaced by Cnt = op(n/log n). Judging from the known results in density
estimation, it seems doubtful that the condition (5) can be substaintially
improved.

We also remark that Y. S. Chow and others [3] gave a result concerning
the truth of (6), where K, has a form K_ = {(i/An,(i+1)/1n, i=0,+1,+2,...},
Ay = Ag(XsecsX ) is determined by the sample in a way described in (3],
but the condition imposed on f is rather stringent.

Chen and Rubin also considered in [2] the case that X is multidimension-

al, again for weak convergence., For the problem of strong convergence, Wang

.
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and Chen [8] obtained some results which are of more complicated form.
Recently, we improved these results and obtain a simple one which includes
the above one-dimensional result as a special case.

In this paper we give a proof in detail for one-dimensional case only.
In Section 2 we introduce a lemma which is needed in the sequel. The proof
of the main result is given in Section 2. In Section 3 we discuss a general-

ization to the multidimensional case.
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2. A LEMMA

The proof of Theorem 1 depends on a lemma which is proved in this
section, The lemma has independent interest, and may be useful in some

related problems.

Lemma 1, Suppose that xl,xz,... is a sequence of independent one-dimen-
sional random variables, and the distribution function F of X] is continuous
everywhere on R]. Denote by Fnthe empirical distribution function of
{X}se.esX 3. Then there exist absolute constants C; > 0, i = 0,1,...,4,
such that for any € > 0 we have

P{sup|F _(A) - F(A)| > e}
peF "

< QIR+ Perpl-Cpnel/b) + Cioxpl-Cne), (7
evn

where F is a set consisting of some intervals AC R1 with

sup F(A) < b <1
AeF

and n/log n is greater than Co/e.

Proof. By a result of Komlds, Major and Tusnédy [6], we can find a suitable
probability space in which we can define an i.i.d. sequence (which for con-
venience will be denoted again by X],...,Xn) whose common distribution is

F, and a Brownian bridge Bn(t), such that

P{supln(Fn(x) - F(x)) - /FBn(F(x))I >Clogn +y}
X

< C exp(-Ay), (8)

where C, C and A are positive absolute constants. Put Bn(t) = wn(t) - twn(l),

where Nn is a Brownian motion process, and write
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\ 5
n(F_(x) - F(x)) = /A8 (F(x)) + e (x).

Then for A = [a1 ,a2) € F we have

FA) - F(A) = n"Y2[ (F(ap)) = W, (F(a)))]
A e V2R (1) + 07 (ay) - e (a))]. (9)

From (8), when ne/6 > 2C log n we have

P{sup %len(az) - en(a.l)l > e/3}

AeF
> < P{sup[en(x)l _>_né/6} < c exp(-xne/12). (10)
X
f Further,
. P(sup n']/zF(A)an(l)I >¢e/3)
AeF
K. < P(lwn(1)| >e/n/(3b)) '
:' 2 2
v 6b ne 6/5. ne
< ——— exp(- ) exp(=rer). (1) -
=V~ 182 < VZme /o 18D

By Lemma 1,2.1 in {4] and sup F(A) < b,

AefF
3 -1/2
R P{sup n W (F(a,)) - W (F(ay))| 2¢/3}
: AeF n 2 n 1
< P{ sup W (x,) = W (x;)] >evA/3}

Xog=X15b, 02Xy <X <]

| A

P{ sup sup Iwn(s+t) - Nn(s)l > (e/n/3/b)vB}
0<s<2-b o<t<b

< exp(-ne?/18b), (12)

where C is a constant. The lemma now follows from (9)-(12). ;
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Remark. The lemma is an essential improvement of a similar result given

by Devroye and Wagner in [5] for the special case that F consists of one-

dimensional intervals. In their result, b is given by

b = sup F(A), and F' = {A = [a,ath): a & R‘, h =2 sup|Aj}.
AeF' AeF




3. PROOF OF THE THEOREM 1
First we note that it is enough to show that

t
Tim { | f - fn[dx = 0, a.s. for each t > O, (13)
o -t

For if (13) has been proved, denote by E, © R” the set on which (13) is not

true. Then P(E,) = 0. Put€ =y E
t t=1

£ By an easy argument it is seen that

lim Jr|f - fldx>0on R - E.
o

Next define

Q,(x) = fr flu)du/|T (x)].

A (x)

In order to prove (13) it is enough to procve that

t
Tim f |f - indx = 0, a.s. for each t > 0, (14)
o /ot
tin (* |f - Q |dx = 0, a.s. for each t > 0 (15)
n->°°_tn n 3 M=o °

By assumption 1 of Theorem 1 it is easily seen that there exists a set

A< R” such that P(A) = 0 and for (X;,X,,...) € A we have Tim|I (x)| =0
o
for x € R], a.e.L, and in turn it follows that lim Qn(x) = f(x) for x, a.e.lL.
oo

Since Qn(x) is a density function when (X1,X2,...) is fixed, by a well-known

theorem due to Schéffe, it follows that Tim jlf - Qn[dx = 0 for each fixed
n-PQ
(XT,XZ,...)'E A. Thus (14) is proved,

Now we proceed to prove (15). Denote by Bapsesslnm those intervals
. n

belonging to Kn and having common points with [-t,t]. Put




F = {I(i3Xp00esx ) i =1,2,...3
U(x veeasx ) € R" 1 n
1 n

and denote by F(b)(O < b < 1) the set of intervals belonging to F and

m
satisfying F(I) < b. Then .y " & . D[-t,t], and by Assumption 2 of
Theorem 1 we have 1=1
m = o(n/log n), a.s. (16)

Denote by #(A) the number of elements belonging to A, and

q; = #(G:1 <§ <n, X; € LS
Z; = f fdx. (17)
A .
ni
Then we have
t mn
J-tlfn - Q ldx <}, j | £, - Qdx
ni
B . (18)
n Li=1 i ni'®

3/2, (312)3/2, C—fL?)3}, where C_,

4 Cze

CZ' C4 are the constants mentioned in Lemma 1. Divide {1,2,...,mn} into a

Given € > 0, choose M > max{64, (CO/E)

number of nonintersecting sets Jo’Jl"" in the following way:

JO = {i: 1 <1 < m s JA

A

ni M log n/n},

J
r

{i:1<i<m, Mrr-1 logn<Z.< logn}, r=1,2,... .

M+r
n n n

De fine a; = #(Ji)’ i=0,1,2,... . Since ffdx = 1, we have

. a;(M+14-1)Togn/n < 1. From this and M > 1 we have
i=1
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N 1 a;(M+ Nlogn/n <2, (19)
i=]

By (M +r - 1)logn/n < 1, we can restrict ourselves to the cases where

. r < nflog n. Thus

m n/log n
1 n :
- . -nl .| = ni
n 2i=1|q"‘ ! r=o te] = Zas
r
1 s/log n
L) a; sup |F (1) - F(D)], (20)
r=0 leF
r
where
F. = F({M + r)log n/n), r > 0.
Write
B, = {sup IFn(I) - F(I)] > &M Tog n/n ,
leF
0
. _ -1/3
B B. = {sup an(I) - FHI)| > M (M +r)logn/n}, r>1,
" IeF
. r
- and
- n/log n
X B =U B.. Using Lemma 1, we get
- r=o r
- P(Bo).i C1( ! + 1: n)exp(—czezM log n)
evM log n 9
: + C3 exp(- C4sM log n), (21)
y and
e P -
N P(Br).i Ciig M 1/6(1og n) e, n/M log n)exp(-C2e2M1/31og n)
- . c 2/3
< 3 exp(- CdM e log n), (22)

g
[P R 4
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which implies

P(B) < ¢/,
where C does not depend on n.
But when the event B does not happen, we have
m
M1 M+r)1 = 1/3
%zn laps = nZpsl i{ao——%g_ﬂ+z a(—)ﬁg_nM e

i=1 r21 r

By (19) and M > 64 it follows that

1¢™n 2
P(; 2i=1lqni - "Znil > a M log n/n + €/2) < P(B) < C/n",

Hence by Borel-Cantelli's Lemma we have

m
P(% 21:!0“1 - n-Zm.] > a0€M ]og n/n + 5/2, ioO.) = 0.

Therefore, with probability one, we can assert that

m
%2:1|Qm- - nZ | < aeM logn/n +¢/2 (23)

for n sufficiently large. But by (16)

a, <m = o(n/log n), a.s.

From this and (23), it follows that with probability one, we have

m
% 2.n1|Qni - nznil bl (24)
'l:

for n sufficiently large. Since € > 0 is arbitrarily given, (15) follows

from (18) and (24), and Theorem 1 is proved.
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4. MULTIDIMENSIONAL CASE

We now consider multidimensional extension of the result in Section 3.
Let us assume that X, X1, ey Xn are i,i.d. d-dimensional random vectors,

and replace density, partition, interval in R] and so on by the analogues

in Rd. In particular, by an interval in Rd we mean a set in Rd having the
form .g A;, where A.'s are all one-dimensional intervals. Now C,¢ in (5)
is def;;;d as the number of intervals in Kn having at least one common point

with the interval V, = {{xq,....xy) ¢ |x, [ <t, i =1,...,d}. Also, condi-
tion (4) is replaced by the following:

(1) Tim D(I_(x)) = 0, a.s. for x ¢ R%, a.e.L, (25)
Mo

where D(I) denotes the diameter of set I C Rd.

For the case where d > 1, Chen and Rubin (2] proved that An—z» 0 under
(25), Cnt = op(/ﬁ) for any t > 0, and another condition with a more compli-

cated nature. Wang and Chen' [8] studied the problem of strong convergeﬁce
of 4 . They proved that lim 8, =0, a.s. if (25) holds and one among

=00
the following sets of conditions is satisfied:

. Cy = o(/n/Tog n), a.s. for any t > 0,

IT''. f is bounded on any bounded subset of Rd,

Cot = o(n/log n), a.s. for any t > O,
1im sup cn(t) <w, a.s. for any t > 0,
e

where

on(t) = sup{D(I) : I & K, and I n Ve 723,

II'''. For a > 0 large enough, the set {x : f(x) < a} differs only by

a null Lebesgue measurable set from an open set,

Cnt = 0(n/log n), a.s. for any t> O,
Tim on(t) = 0, a.s. for any t > 0.
N>

..............
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Recently, we find an inequality by which we obtain the following.

Theorem 2. Suppose that Kn satisfies the condition (I) and

(11) ¢, = o{n/log n), a.s. for any t > 0.

nt
Then (6) is true for the d-dimensional case.

Since the proof is parallel to that of Theorem 1, we only introduce
related inequality. |

To this end, let XqseeasXy be r points in Rd, and A be a class of Borel
sets in Rd. Denote by AA(x]....,xr) the number of distinct sets in

{{x],....xr} N A, Ae A}. Define

).

mA(r) = max d AA(x1,...,x

r
x],...,xrsR

Vapnik and Chervonenkis' [7] showed that either mA(r) = 2" for any positive
integer r or mA(r) < r’ + 1, where s is the smallest k such that mA(k) # 2%,
A class of sets A for which the latter case holds will be called a V-C class
with index s.

Suppose that u is a probability measure on Rd. Let X1,X2,... be a

sequence of i.i.d. random vectors with common distribution u, and Hp be the

empirical distribution of X],...,Xn. Denote a "distance” between M and u

by
D (Asu) = suplu (A) - u(A)].
AeA
Here we assume that Dn(A,u), suplun(A) - uZn(A)l and sup un(A) are all random

AgA AeA

variables. We have the following.

Lemma 2. Let A be a V-C class with index s such that

9w O e v -.
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13
sup u(A) < 6 < 1/8. (26)
AeA
Then for any € > 0 we have
PID_(Au) > ¢} < 5(2n)%exp(- ne?/(91s + 4c)) (27)
+ 7(2n)sexp(-5n/68)
+ 22+sn1+25exp(-6n/8),

provided n > max (120/¢2, 68(1 + s)(log 2)/5).
Proof. See [9].

In the present case, we should take A as some interval class in Rd
which is a V-C class obviously. Also, there is no problem with measur-
ability mentioned above. As an alternative lemma, we can also use the

corollary 2.9 in (1].
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